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Variable transformations for numerical integration have been used for improving
the accuracy of the trapezoidal rule. Specifically, one first transforms the inte-
gral I [f ] = ∫ 1

0 f (x) dx via a variable transformation x = φ(t) that maps [0,1]
to itself, and then approximates the resulting transformed integral I [f ] =∫ 1

0 f
(
φ(t)

)
φ′(t) dt by the trapezoidal rule. In this work, we propose a new class

of symmetric and nonsymmetric variable transformations which we denote T r,s ,
where r and s are positive scalars assigned by the user. A simple representa-
tive of this class is φ(t)= (sin π

2 t)
r /[(sin π

2 t)
r + (cos π2 t)

s ]. We show that, in case
f ∈C∞[0,1], or f ∈C∞(0,1) but has algebraic (endpoint) singularities at x= 0
and/or x=1, the trapezoidal rule on the transformed integral produces exception-
ally high accuracies for special values of r and s. In particular, when f ∈C∞[0,1]
and we employ φ ∈Tr,r , the error in the approximation is (i)O(hr ) for arbitrary
r and (ii)O(h2r ) if r is a positive odd integer at least 3, h being the integration
step. We illustrate the use of these transformations and the accompanying theory
with numerical examples.
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1. INTRODUCTION AND BACKGROUND

Consider the problem of evaluating finite-range integrals of the form

I [f ]=
∫ 1

0
f (x) dx, (1.1)

where f ∈C∞(0,1) but is not necessarily continuous or differentiable at x=0
and/or x = 1, and may even have different types of singularities at the end-
points. One very effective way of computing I [f ] is by first transforming it with
a suitable variable transformation and next applying the trapezoidal rule to
the resulting transformed integral. Thus, if we make the substitution x=ψ(t),
whereψ(t) is an increasing differentiable function on [0,1], such thatψ(0)=0
and ψ(1)=1, then the transformed integral is

I [f ]=
∫ 1

0
f̂ (t) dt; f̂ (t)=f (

ψ(t)
)
ψ ′(t), (1.2)

and I [f ] can be approximated by applying the trapezoidal rule to
∫ 1

0 f̂ (t)dt ,
namely, by

Q̂n[f ]=h
[

1
2
f̂ (0)+

n−1∑

i=1

f̂ (ih)+ 1
2
f̂ (1)

]

; h= 1
n
. (1.3)

If, in addition, ψ(t) is chosen such that ψ(i)(0) = ψ(i)(1) = 0, i = 1,
2, . . . , p, for some sufficiently large p, then the function f̂ (t) is such that
f̂ (i)(0) = f̂ (i)(1) = 0, i = 1,2, . . . , q, for some q. Thus, from the Euler–
Maclaurin expansion of Q̂n[f ] (see, e.g., Davis and Rabinowitz [5] or Sto-
er and Bulirsch [19] or Atkinson [2] or Sidi [10, Appendix D]), it follows
that Q̂n[f ] − I [f ] = o(n−q) as n→ ∞, which means that Q̂n[f ] approxi-
mates I [f ] with surprisingly high accuracy even for moderate n. In such
a case, we also have f̂ (0)= f̂ (1)=0, and Q̂n[f ] assumes the simpler form

Q̂n[f ]=h
n−1∑

i=1

f̂ (ih); h= 1
n
. (1.4)

Variable transformations in numerical integration, especially in the
presence of integrands with endpoint singularities, have been of consider-
able interest lately. In the context of one-dimensional integration, they are
used as a means to improve the performance of the trapezoidal rule, as we
have already mentioned. They have also been used by Verlinden et al. [20],
in conjunction with extrapolation methods, to improve the performance of
the product trapezoidal rule in multiple integration. Recently, they have
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been used to improve the performance of the Gauss–Legendre quadra-
ture; see, for example, Monegato and Scuderi [7] and Johnston [6]. In the
context of multi-dimensional integration, they are used to “periodize” the
integrand in all variables so as to improve the accuracy of lattice rules; see,
for example, Sloan and Joe [18] and Robinson and Hill [8]. (Lattice rules
are extensions of the trapezoidal rule to many dimensions.) They have also
been used in conjunction with the product trapezoidal rule in computing
integrals over surfaces of spheres in three dimensions and, more gener-
ally, on surfaces of bounded sets in R

3; see Atkinson [3], Atkinson and
Sommariva [4], and Sidi [12–14,17].

Normally, we also demand that ψ(t) be symmetric, in the sense
that ψ(1 − t) = 1 − ψ(t), which forces on ψ ′(t) the symmetry property
ψ ′(1 − t)=ψ ′(t). Most variable transformations are indeed symmetric in
this sense. However, as discussed by Monegato and Scuderi [7], by employ-
ing nonsymmetric variable transformations, we can cope with integrands
having singularities of different strengths at the endpoints more efficiently.
Actually, these authors show exactly how to modify the known symmetric
transformations in simple ways to obtain nonsymmetric ones.

Following Monegato and Scuderi [7] and Sidi [15], in [16], the author
developed a class of nonsymmetric variable transformations, denoted Sp,q ,
that is defined as follows:

Definition 1.1. A function ψ(t) is in the class Sp,q , with p,q >0 but
arbitrary, if it has the following properties:

1. ψ ∈C[0,1] and ψ ∈C∞(0,1); ψ(0)=0, ψ(1)=1, and ψ ′(t)>0 on
(0,1).

2. ψ ′(t) has the following asymptotic expansions as t→0+ and t→1−:

ψ ′ (t)∼
∞∑

i=0

εi t
p+2i as t→0+,

(1.5)

ψ ′ (t)∼
∞∑

i=0

δi(1− t)q+2i as t→1−,

and ε0, δ0>0. Consequently,

ψ (t)∼
∞∑

i=0

εi
tp+2i+1

p+2i+1
as t→0+,

(1.6)

ψ (t)∼1−
∞∑

i=0

δi
(1− t)q+2i+1

q+2i+1
as t→1− .
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3. For each positive integer k, ψ(k)(t) has asymptotic expansions as
t→ 0+ and t→ 1− that are obtained by differentiating those of
ψ(t) term by term k times.

A representative of this class is the sinp,q -transformation defined as in

ψp,q(t)= Θp,q(t)

Θp,q(1)
; Θp,q(t)=

∫ t

0

(
sin π

2 u
)p( cos π2 u

)q
du, p, q >0.

(1.7)

This transformation is the nonsymmetric generalization of the sinm-
transformation of the author (proposed originally with integer m in [9],
and extended to arbitrary values of m recently in [15]) and was proposed
with integer p and q in [7]. With integer p and q, it can be computed
recursively, as shown in [7]. In [16], the sinp,q -transformation was extended
to arbitrary and not necessarily integer p and q to enhance their effective-
ness. When either p or q or both are not integers, ψp,q(t) cannot be com-
puted by recursions because initial values are not readily available. In such
cases, ψp,q(t) can be computed by summing a quickly converging infinite
series representation, as shown in [16]. Also, when p= q =m, the sinp,q -
transformation becomes the (symmetric) sinm-transformation. Both when
p= q and p �= q, the sinp,q -transformation can be expressed in terms of
the hypergeometric function F(a, b; c; z)=2F1(a, b; c; z), among others, in
the form

ψp,q(t)=
F

( 1
2 − 1

2q,
1
2p+ 1

2 ; 1
2p+ 3

2 ;S2
)

F
( 1

2 − 1
2q,

1
2p+ 1

2 ; 1
2p+ 3

2 ;1
) Sp+1, S= sin

πt

2
. (1.8)

A complete analysis of the trapezoidal rule approximations Q̂n[f ] as
given in (1.4), with ψ(t)∈Sp,q there, was also provided in [16]. In order to
motivate the developments of the present work, we need to recall Theorem
4.2 and Corollary 4.3 in [16], which are the main results of [16]. These are
given as Theorem 1.2 and Corollary 1.3 below:

Theorem 1.2. Let f ∈C∞(0,1), and assume that f (x) has the asymp-
totic expansions

f (x)∼
∞∑

i=0

cix
γi as x→0+; f (x)∼

∞∑

i=0

di(1−x)δi as x→1−.



Symmetric and Nonsymmetric Periodizing Variable Transformations 395

Here γi and δi are distinct complex numbers that satisfy

−1 <�γ0 ��γ1 ��γ2 � · · · ; lim
i→∞

�γi =+∞,

−1 <�δ0 ��δ1 ��δ2 � · · · ; lim
i→∞

�δi =+∞.

Assume furthermore that, for each positive integer k, f (k)(x) has asymp-
totic expansions as x → 0+ and x → 1− that are obtained by differen-
tiating those of f (x) term by term k times. Let I [f ] = ∫ 1

0 f (x) dx, and
let us now make the transformation of variable x=ψ(t), where ψ ∈Sp,q ,
in I [f ]. Finally, let us approximate I [f ] via the trapezoidal rule Q̂n[f ] =∑n−1
i=1 f

(
ψ(ih)

)
ψ ′(ih), where h = 1/n, n = 1,2, . . . . Then the following

hold:

(i) In the worst case,

Q̂n[f ]−I [f ]=O(
hω

)
as h→0; ω=min{(�γ0+1)(p+1), (�δ0+1)(q+1)}.

(ii) If γ0 and δ0 are real, and if p = (2k − γ0)/(γ0 + 1) and
q= (2l− δ0)/(δ0 +1), where k and l are positive integers, then

Q̂n[f ]−I [f ]=O(
hω

)
as h→0; ω=min{(�γ1+1)(p+1), (�δ1+1)(q+1)},

at worst.

Remark. If f (x)=xμ(1−x)νg(x), g(x) being infinitely differentiable
on [0,1], then f (x) satisfies the conditions of the theorem. In such a case,
if f (x) has full Taylor series at x = 0 and x = 1, we have γi =μ+ i and
δi =ν+ i, i=0,1, . . . . Note that this f (x) has an algebraic branch singu-
larity at x= 0 if μ is not a positive integer. Similarly, it has an algebraic
branch singularity at x=1 if ν is not a positive integer.

Corollary 1.3. In case f (x) = xμ(1 − x)νg(x), g(x) being infinitely
differentiable on [0,1], the following hold:

(i) In the worst case,

Q̂n[f ]−I [f ]=O(
hω

)
as h→0; ω=min{(�μ+1)(p+1), (�ν+1)(q+1)}.

(ii) If μ and ν are real, and if p= (2k −μ)/(μ+ 1) and q = (2l −
ν)/(ν+1), where k and l are positive integers, then

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω=min{(μ+2)(p+1), (ν+2)(q+1)},

at worst.
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Remark. Note that the results in parts (ii) of Theorem 1.2 and Cor-
ollary 1.3 are the best that can be obtained and are made possible by our
definition of the class Sp,q transformations, where we have excluded the
powers tp+2i+1 and (1− t)q+2i+1, i=0,1, . . . , from the asymptotic expan-
sions of ψ ′(t) as t→0+ and t→1−.

Now, in [15], we introduced the concept of quality of Q̂n[f ] in a way
that is relevant to symmetric variable transformations. Here we modify this
concept to make it relevant to nonsymmetric transformations in Sp,q as
follows: If ψ ′(t)∼ αtp as t → 0+ and ψ ′(t)∼ β(1 − t)q as t → 1−, and
if Q̂n[f ] − I [f ] =O(hσ ) as h→ 0, the quality of Q̂n[f ] is the ratio σ/w,
where w = max{p + 1, q + 1}. Note that the effective abscissas in Q̂n[f ]
given in (1.4) are xi≡ψ(ih)=ψ(i/n) and these cluster near x=0 and x=1
in the variable x and that the clustering increases with increasing p and q
simultaneously with the accuracy of Q̂n[f ]. Because too much clustering
is not desirable, we would like to get as much accuracy as possible from a
given amount of clustering. In other words, we would like the quality of
Q̂n[f ] to be as high as possible. This is achieved by the variable transfor-
mations in Sp,q with special (not necessarily integer) values of p and q.

In view of what we have described so far, we now address ourselves
to the following question: Are there variable transformations ψ(t) that are
not in Sp,q with the properties that (i) they satisfy ψ(t)∼ εtp+1 as t→0+
and ψ(t)∼ 1 − δ(1 − t)q+1 as t→ 1− just as those in Sp,q do, (ii) are easy
to compute, and (iii) Theorem 1.2 and Corollary 1.3 remain unchanged in
their presence?

In this work, we propose a novel class of variable transformations,
which we denote Tr,s , that have these properties in general. The members
of Tr,s are analogous to those of Sr−1,s−1, and although they differ from
the latter substantially, they have similar properties. In particular, there
are analogues of Theorem 1.2 and Corollary 1.3 that pertain to members
of Tr,s and that say that, in general, whatever can be done with variable
transformations in Sr−1,s−1 can be done also with those in Tr,s . In addi-
tion, we have been able to produce transformations in Tr,s that are easier
to compute than those in the classes Sp,q .

In the next section, we define the class Tr,s and show how trans-
formations in this class can be determined easily. We provide a remark-
ably simple and easily computable representative of it, which we denote
the T r,s-transformation. When r= s, this transformation, denoted the T r -
transformation for short, is symmetric. In Section 3, we provide the con-
vergence theory of the trapezoidal rule approximations Q̂n[f ] obtained
using members of Tr,s . We also show how the performance of our
approach can be improved substantially by subtracting from the inte-
grand a simple function with known integral. In Section 4, we provide
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numerical examples that illustrate the theory. We use the T r,s-transforma-
tion in these examples. Finally, in Section 5, we discuss an already existing
modification of the class proposed here, and show that it is inferior to the
class Tr,s .

To distinguish the variable transformations in Tr,s from those in Sp,q ,
in the sequel, we will denote them by φ(t) instead of ψ(t).

2. THE CLASS TTTr,s

2.1. Definition of the Class TTTr,s

Definition 2.1. A function φ(t) is in the class Tr,s , with r, s > 0 but
arbitrary, if it has the following properties:

1. φ ∈C[0,1] and φ ∈C∞(0,1); φ(0)= 0, φ(1)= 1, and φ′(t)> 0 on
(0,1).

2. φ(t) has the following asymptotic expansions as t→0+ and t→1−:

φ (t)∼

r/2�∑

i=0

αit
r+2i +

∞∑

i=0

α̃i t
σi as t→0+; α0>0,

(2.1)

φ (t)∼1−

s/2�∑

i=0

βi(1− t)s+2i −
∞∑

i=0

β̃i (1− t)ρi as t→1−; β0>0,

where

2r = σ0<σ1< · · · ; lim
i→∞

σi =∞,
(2.2)

2s = ρ0<ρ1< · · · ; lim
i→∞

ρi =∞.

3. For each positive integer k, φ(k)(t) has asymptotic expansions as
t→ 0+ and t→ 1− that are obtained by differentiating those of
φ(t) term by term k times. In particular, φ′(t) has the following
asymptotic expansions as t→0+ and t→1−:

φ′ (t)∼

r/2�∑

i=0

(r+2i)αi tr+2i−1 +
∞∑

i=0

σiα̃i t
σi−1 as t→0+,

(2.3)

φ′ (t)∼

s/2�∑

i=0

(s+2i)βi(1− t)s+2i−1 +
∞∑

i=0

ρiβ̃i(1− t)ρi−1 as t→1−.
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Remarks. 1. From Definition 2.1, it is clear that φ∈Tr,s satisfies

φ (t)=

r/2�∑

i=0

αit
r+2i +O(

t2r
)

as t→0+,
(2.4)

φ (t)=1−

s/2�∑

i=0

βi(1− t)s+2i +O(
(1− t)2s) as t→1−,

and

φ′ (t)=

r/2�∑

i=0

(r+2i)αi tr+2i−1 +O(
t2r−1) as t→0+,

(2.5)

φ′ (t)=

s/2�∑

i=0

(s+2i)βi(1− t)s+2i−1 +O(
(1− t)2s−1) as t→1−.

2. As we will see in Section 3, what makes class Tr,s transformations
effective is the fact that we have excluded the powers t r+2i+1, i=
0,1, . . . , 
r/2� − 1, and (1 − t)s+2i+1, i = 0,1, . . . , 
s/2� − 1, from
the asymptotic expansions of φ(t) as t→ 0+ and t→ 1−, respec-
tively.

To keep the developments below and the notation simple, we give two
definitions.

Definition 2.2. We denote generically by Rμ(t) any function g(t) that
has an asymptotic expansion of the form

g(t)∼
∞∑

i=0

ri t
μ+2i as t→0+.

Remark. Note that, in Definition 2.2, we do not require r0 �= 0,
because such a requirement is not needed in the sequel.

By Definition 2.2, we have

Rμ(t)+Rμ+2j (t)=Rμ(t), j =0,1,2, . . . , (2.6)

hence
∞∑

j=0

Rμ+2j (t)=Rμ(t). (2.7)
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In addition,

[Rμ(t)]α =Rαμ(t) and Rμ(t)Rν(t)=Rμ+ν(t). (2.8)

In case

�μ1<�μ2< · · · ; lim
k→∞

�μk =+∞, (2.9)

and

Rμk (t)∼ rk,0tμk as t→0+; rk,0 �=0, k=1,2, . . . , (2.10)

there holds

lim
t→0+

Rμk+1(t)

Rμk (t)
=0, k=1,2, . . . , (2.11)

that is, the sequence {Rμk (t)}∞k=1 is an asymptotic scale as t→0+.
If Rμ(t) can be differentiated term by term, we have

d

dt
Rμ(t)=Rμ−1(t). (2.12)

If Rμ(t) can be integrated term by term, we have
∫ t

0
Rμ(u) du=Rμ+1(t). (2.13)

We will make free use of all this in the sequel.

Definition 2.3. We say that a function g(t) belongs to the set Kμ,
μ>0, if

g(0)=0, g(1)=1; g∈C∞(0,1), g′(t)>0 for t ∈ (0,1),
and if g(t) has asymptotic expansions as t→0+ and as t→1− given as

g(t) ∼
∞∑

i=0

g
(0)
i tμ+2i as t→0+; g

(0)
0 >0,

g(t) ∼
∞∑

i=0

g
(1)
i (1− t)2i as t→1−; g

(1)
0 =1,

and if, for each k = 1,2, . . . , the kth derivative of g(t) has asymptotic
expansions as t→0+ and t→1− that are obtained by differentiating those
of g(t) term by term k times.
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Remark. Note that the function g(t) = tp, p > 0, even though it
shares some of the properties of functions in Kp, does not belong to the
set Kp.

The following conclusions can easily be drawn from Definition 2.3:

g∈Kμ ⇒ g(t)=
{
Rμ(t) (for t→0+)
R0(1− t) (for t→1−) .

g∈Kμ ⇒ u(t)= [g(t)]ν ∈Kμν if ν >0.

g1 ∈Kμ, g2 ∈Kν ⇒ u(t)=g1(t)g2(t)∈Kμ+v.

We will make use of these properties of functions in the sets Kμ shortly.

2.2. Construction of Functions in Tr,s

We now propose one simple way of constructing some functions in
Tr,s : Let u(t) and v(t) be such that

u(0)=0, u(1)=1; u∈C∞(0,1), u′(t)>0 for t ∈ (0,1),
v(0)=0, v(1)=1; v∈C∞(0,1), v′(t)>0 for t ∈ (0,1),

Thus, u(t)>0 and v(t)>0 for 0<t�1 as well. Now set

φ(t)= u(t)

u(t)+v(1− t) .

It is easy to see that u(t)+v(1− t)>0 for t ∈ [0,1], and that

φ(0)=0, φ(1)=1, φ′(t)= u′(t)v(1− t)+u(t)v′(1− t)
[u(t)+v(1− t)]2 >0 for 0<t <1.

That is, φ(t) is an increasing function of t for t ∈ (0,1) and satisfies
0�φ(t)�1 for 0� t�1, and hence is a valid variable transformation.

Note that we also have

φ(t)=1− v(1− t)
u(t)+v(1− t) ,

so that, when u(t) = v(t), there holds φ(1 − t) = 1 − φ(t); that is, φ(t)
becomes a symmetric transformation.

We now choose u(t) and v(t) such that u∈Kr and v∈Ks . Then

w0(t)= u(t)

v(1− t) =Rr(t)=O(tr )=o(1) as t→0+,
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hence, for all small t >0, φ(t) has the convergent expansion

φ(t)= w0(t)

1+w0(t)
=

∞∑

k=1

(−1)k−1[w0(t)]
k =

∞∑

k=1

Rkr(t)

that is also a valid asymptotic expansion as t→0+. Similarly,

w1(t)= v(1− t)
u(t)

=Rs(1− t)=O(
(1− t)s)=o(1) as t→1−,

hence, for all t <1 but close to 1, φ(t) has the convergent expansion

φ(t)=1− w1(t)

1+w1(t)
=1−

∞∑

k=1

(−1)k−1[w1(t)]
k =1−

∞∑

k=1

Rks(1− t)

that is also a valid asymptotic expansion as t→1−. Invoking the proper-
ties of the functions Rμ(t), it is easy to check that φ ∈ Tr,s by Definition
2.1. Summarizing, we have

u∈Kr , v∈Ks ⇒ φ(t)= u(t)

u(t)+v(1− t) ∈Tr,s .

Remark. Recall that the function g(t)= tp, p> 0, does not belong to
the set Kp. Consequently, the rational transformation φ(t)= t r/[t r + (1− t)s ],
defined as explained in the first paragraph of this subsection, and that was first
proposed in [7], is not in Tr,s .

2.3. Construction of Functions in KKKμ

What remains now is the construction of functions in Kμ as inexpen-
sively as possible. Following Definition 2.1, we listed several conclusions
pertaining to the class Kμ. One of these conclusions is that if g∈Kμ, then
gν ∈ Kμν , which means that, if we know one single function w ∈ Kσ for
some arbitrary σ , we can use it to generate functions u ∈ Kμ for any μ

simply via u(t)= [w(t)]μ/σ . Such functions are already known to us from
previous work: functions in the class Sm, m being an odd integer, are in
Km+1, as can be verified by the definition of the class Sm. Recall that if
ψ ∈Sm, m a positive integer, then

ψ ∈C∞[0,1]; ψ(0)=0, ψ(1)=1; ψ ′(t)>0 on (0,1),

and ψ(t) has asymptotic expansions as t→0+ and t→1− of the forms
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ψ (t)∼
∞∑

i=0

ε′i t
m+2i+1 as t→0+,

ψ (t)∼1−
∞∑

i=0

ε′i (1− t)m+2i+1 as t→1−,

and, for each positive integer k, ψ(k)(t) has asymptotic expansions as t→
0+ and t→1− that are obtained by differentiating those of ψ(t) term by
term k times. (Thus, ψ ∈Sm,m as well.)

Choosing two transformations, �(t)∈Sk and �(t)∈Sl , where k and l
are odd positive integers, we set

u(t)= [�(t)]r/(k+1) and v(t)= [�(t)]s/(l+1).

A nice feature of this construction is that we can choose �(t) and �(t) to
be simply ψk−1(t) and ψl−1(t), namely, the sink−1 and sinl−1 transforma-
tions, respectively, which are readily available at a low computational cost,
see [9]. For example,

ψ1(t)= 1
2 (1− cosπt)= (

sin π
2 t

)2
, ψ3(t)= 1

16 (8−9 cosπt+ cos 3πt).

2.4. The T r,s- and T r -Transformations

Choosing �(t)=�(t)=ψ1(t)= (sin π
2 t)

2 in the preceding subsection,
we obtain a remarkably simple and readily computable transformation in
the class Tr,s . We then have u(t)= (sin π

2 t)
r and v(t)= (sin π

2 t)
s , and recall-

ing that sin[π2 (1− t)]= cos π2 t , we finally obtain

φ(t)≡φr,s(t)=
(

sin π
2 t

)r
(

sin π
2 t

)r + (
cos π2 t

)s . (2.14)

Therefore,

φ′(t)≡φ′
r,s(t)=

π

2

(
sin π

2 t
)r−1( cos π2 t

)s−1 s
(

sin π
2 t

)2 + r( cos π2 t
)2

[(
sin π

2 t
)r + (

cos π2 t
)s]2

.

(2.15)

We will call φr,s(t) the T r,s-transformation.
Clearly, when r= s, we have u(t)=v(t), hence the T r,r -transformation

φr,r (t) is symmetric. We denote φr,r (t) by φr(t) for short and call it the
T r -transformation.

We use the T r,s- and T r -transformations in our numerical examples
in Section 4.
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3. ANALYSIS OF THE TRAPEZOIDAL RULE WITH CLASS Tr,s

TRANSFORMATIONS

In this section, we analyze the behavior of the transformed trapezoi-
dal rule Q̂n[f ] given in (1.4) [with ψ(t) there replaced by φ(t) now] when
the integrand f (x) is infinitely differentiable on (0,1) and possibly has
algebraic singularities at x=0 and/or x=1.

As always, Euler–Maclaurin expansions concerning the trapezoidal rule
approximations of finite-range integrals

∫ b
a
u(x) dx are the main analytical tool

we use in our study. For the sake of easy reference, we reproduce here the rel-
evant Euler–Maclaurin expansion due to the author (see, Sidi [11, Corollary
2.2]) as Theorem 3.1. This theorem is a special case of another very general
theorem from [11], and is expressed in terms of the asymptotic expansions of
u(x) as x→a+ and x→b− and is easy to write down and use.

Theorem 3.1. Let u∈C∞(a, b), and assume that u(x) has the asymp-
totic expansions

u (x)∼
∞∑

i=0

ci (x−a)γi as x→a+,

u (x)∼
∞∑

i=0

di (b−x)δi as x→b−,

where the γi and δi are distinct complex numbers that satisfy

−1<�γ0 ��γ1 ��γ2 � · · · ; limi→∞ �γi =+∞,

−1<�δ0 ��δ1 ��δ2 � · · · ; limi→∞ �δi =+∞.

Assume furthermore that, for each positive integer k, u(k)(x) has asymp-
totic expansions as x → a+ and x → b− that are obtained by differen-
tiating those of u(x) term by term k times. Let also h = (b − a)/n for
n=1,2, . . . . Then

h

n−1∑

i=1

u(a+ ih)∼
∫ b

a

u(x) dx +
∞∑

i=0
γi �∈{2,4,6,... }

ci ζ(−γi) hγi+1

+
∞∑

i=0
δi �∈{2,4,6,... }

di ζ(−δi) hδi+1 as h→0,

where ζ(z) is the Riemann Zeta function.
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It is clear from Theorem 3.1 that even positive powers of (x−a) and
(b−x), if present in the asymptotic expansions of u(x) as x→a+ and x→
b−, do not contribute to the asymptotic expansion of h

∑n−1
i=1 u(a+ ih) as

h→0.
In addition, if γp is the first of the γi that is different from 2,4,6, . . . ,

and if δq is the first of the δi that is different from 2,4,6, . . . , then

h

n−1∑

i=1

u(a+ ih)−
∫ b

a

u(x) dx=O(
hσ+1) as h→0; σ =min{�γp,�δq}.

Here is our main result:

Theorem 3.2. Let f ∈C∞(0,1), and assume that f (x) has the asymp-
totic expansions

f (x)∼
∞∑

i=0

cix
γi as x→0+; f (x)∼

∞∑

i=0

di(1−x)δi as x→1− .

Here γi and δi are distinct complex numbers that satisfy

−1<�γ0 ��γ1 ��γ2 � · · · ; limi→∞ �γi =+∞,

−1<�δ0 ��δ1 ��δ2 � · · · ; limi→∞ �δi =+∞.

Assume furthermore that, for each positive integer k, f (k)(x) has asymptotic
expansions as x→0+ and x→1− that are obtained by differentiating those
of f (x) term by term k times. Let us now make the transformation of var-
iable x = φ(t) in I [f ] = ∫ 1

0 f (x) dx, with φ ∈ Tr,s , the result of this being
I [f ]= ∫ 1

0 f̂ (t) dt , where f̂ (t)=f (
φ(t)

)
φ′(t). Finally, let us approximate the

transformed I [f ] via the trapezoidal rule Q̂n[f ]=h∑n−1
i=1 f̂ (ih), where h=

1/n, n=1,2, . . . . Then the following hold:

(i) In the worst case,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0;

ω=min{(�γ0 +1)r, (�δ0 +1)s}.
(ii) If γ0 and δ0 are real, and if r= (2k+1)/(γ0 +1) and s= (2l+1)/

(δ0 +1), where k and l are positive integers, then, at worst,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0,
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where now

ω=min{(γ0 +2)r, (�γ1 +1)r, (δ0 +2)s, (�δ1 +1)s}.

Remark. If f (x)=xμ(1−x)νg(x), g(x) being infinitely differentiable
on [0,1], then f (x) satisfies the conditions of the theorem. In such a case,
if f (x) has full Taylor series at x = 0 and x = 1, we have γs =μ+ s and
δs =ν+ s, s=0,1, . . . . Note that this f (x) has an algebraic branch singu-
larity at x= 0 if μ is not a positive integer. Similarly, it has an algebraic
branch singularity at x=1 if ν is not a positive integer.

Proof. To keep the presentation simple, we do the proof with φ(t) as
in subsection 2.2. It is clear from Theorem 3.1 that we need to analyze the
asymptotic expansions of the transformed integrand f̂ (t)=f (

φ(t)
)
φ′(t) as

t→0 and t→1. Because φ(t)→0 as t→0+ and φ(t)→1 as t→1−, we
first have the genuine asymptotic expansions

f̂ (t)∼
∞∑

i=0

K
(0)
i (t) as t→0+; K

(0)
i (t)= ci [φ(t)]γi φ′(t),

and

f̂ (t)∼
∞∑

i=0

K
(1)
i (t) as t→1−; K

(1)
i (t)=di [1−φ(t)]δi φ′(t).

Invoking the relevant asymptotic expansions of φ(t) in subsection 2.2, and
re-expanding, we have that K(0)

i (t) contributes the sum

K
(0)
i (t)=

[ ∞∑

k=1

Rkr(t)

]γi ∞∑

k=1

Rkr−1(t) as t→0+

=
∞∑

k=1

R(γi+k)r−1(t) as t→0+, (3.1)

whereas K(1)
i (t) contributes the sum

K
(1)
i (t) =

[ ∞∑

k=1

Rks(1− t)
]δi ∞∑

k=1

Rks−1(1− t) as t→1−

=
∞∑

k=1

R(δi+k)s−1(1− t) as t→1−. (3.2)
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To see this, we proceed as follows: As z→0+, and omitting the argument
z in Rp(z) (as z→ 0+), and taking p> 0 so that Rp(z)=O(zp)= o(1) as
z→0+, there holds

[ ∞∑

k=1

Rkp

]σ ∞∑

k=1

Rkp−1 =
[

Rp

(

1+
∞∑

k=1

Rkp

)]σ[

Rp−1

(

1+
∞∑

k=1

Rkp

)]

=
[

Rσp

(

1+
∞∑

k=1

Rkp

)σ][

Rp−1

(

1+
∞∑

k=1

Rkp

)]

=
[

Rσp

(

1+
∞∑

k=1

Rkp

)][

Rp−1

(

1+
∞∑

k=1

Rkp

)]

= RσpRp−1

(

1+
∞∑

k=1

Rkp

)(

1+
∞∑

k=1

Rkp

)

= Rσp+p−1

(

1+
∞∑

k=1

Rkp

)

=
∞∑

k=1

R(σ+k)p−1.

We note that the most dominant terms in the asymptotic expansions
of f̂ (t) as t → 0+ and as t → 1− come from K

(0)
0 (t) and from K

(1)
0 (t),

respectively, and they are α′t (γ0+1)r−1 and β ′(1 − t)(δ0+1)s−1, respectively,
for some α′ and β ′. Thus, by Theorem 3.1, the most dominant terms in
the expansion of Q̂n[f ]−I [f ] as h→0 are αh(γ0+1)r coming from the end-
point t=0, and βh(δ0+1)s coming from the endpoint t=1, for some α and
β. This proves part (i) of the theorem.

To prove part (ii), we need a more refined study of the terms from
K
(0)
0 (t) and from K

(1)
0 (t). The first term in the summation of (3.1),

namely, R(γ0+1)r−1(t), contains only even positive powers of t in its asymp-
totic expansion as t→0+ provided r is chosen such that (γ0 +1)r=2k+1,
where k is a positive integer. With this r, R(γ0+1)r−1(t) contributes nothing
to the Euler–Maclaurin expansion of Q̂n[f ] − I [f ] by Theorem 3.1. The
most dominant terms that can contribute are (i)R(γ0+2)r−1(t) of K(0)

0 (t)

and (ii) R(γi+1)r−1(t) of K(0)
i (t), i� 1, for which �γi = �γ1. These terms

contribute αh(γ0+2)r and βih
(γi+1)r , for some α and βi .

Similarly, the first term in the summation of (3.2), namely,
R(δ0+1)r−1(1 − t), contains only even positive powers of (1 − t) in its
asymptotic expansion as t→1− provided s is chosen such that (δ0 +1)s=
2l+1, where l is a positive integer. With this s, R(δ0+1)s−1(1− t) contributes
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nothing to the Euler–Maclaurin expansion of Q̂n[f ] − I [f ] by Theorem
3.1. The most dominant terms that can contribute are (i)R(δ0+2)s−1(1− t)
of K(1)

0 (t) and (ii)R(δi+1)s−1(1 − t) of K(1)
i (t), i� 1, for which �δi = �δ1.

These terms contribute αh(δ0+2)s and βih
(δi+1)s , for some α and βi .

Combining the above, we complete the proof of the result in part (ii).
�

Remark. Note that the result in part (ii) of Theorem 3.2 is made
possible by our definition of the class Tr,s transformations, where we have
excluded the powers t r+2i+1, i= 0,1, . . . , 
r/2�− 1, and (1 − t)s+2i+1, i=
0,1, . . . , 
s/2�−1, from the asymptotic expansions of φ(t) as t→0+ and
t→1−.

Corollary 3.3. In case f (x) = xμ(1 − x)νg(x), g(x) being infinitely
differentiable on [0,1], the following hold:

(i) In the worst case,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0;

ω=min{(�μ+1)r, (�ν+1)s}.

(ii) If μ and ν are real, and if r = (2k + 1)/(μ+ 1) and s = (2l +
1)/(ν+1), where k and l are positive integers, then we have the
optimal result

Q̂n[f ]− I [f ]=O(
hω

)
as h→0;

ω=min{(μ+2)r, (ν+2)s}.

Corollary 3.4. When μ=ν=c, let φ∈Tr,r in Corollary 3.3. Then the
following hold:

(i) In the worst case,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω= (�c+1)r.

(ii) If c is real, and if r= (2k+1)/(c+1), where k is a positive inte-
ger, then we have the optimal result

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω= (c+2)r.

In case c=0 (that is, f ∈C∞[0.1]) in Corollary 3.4, we have an error
of O(hr) with arbitrary r, whereas the error is O(h2r ) when r is a positive
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odd integer, and this result is the same as that given in [9, Theorem 3.5]
pertaining to class Sr−1 variable transformations.

When μ �=ν in part (ii) of Corollary 3.3, we choose the integers k and
l such that (μ+2)r≈ (ν+2)s, that is,

2k+1
2l+1

≈ ν+2
ν+1

· μ+1
μ+2

.

(Thus, by choosing k first, we can determine l, and vice versa.) This
guarantees that the singularities of the transformed integrand f̂ (t) =
f (φ(t))φ′(t) at the endpoints are of approximately the same strength.

3.1. An Improvement of the Numerical Quadrature Approximation to I [f ]

In case f (x)=xμ(1−x)vg(x), with μ,v real and>−1, g∈C∞[0,1], and
g(0) and g(1) available, we can exploit the result of Corollary 3.3 to improve the
accuracy of the approximation to I [f ] as follows: Let v(x) be the linear func-
tion interpolating g(x) at x=0 and x=1; that is, v(x)=g(0)+ [g(1)−g(0)]x.
Let also g0(x)=g(x)−v(x). Then

f (x)=p(x)+f0(x); p(x)=xμ(1−x)vv(x), f0(x)=xμ(1−x)vg0(x),

and

I [f ]= I [p]+ I [f0].

We now compute I [p] exactly; we have

I [p]=g(0)B(μ+1, ν+1)+ [g(1)−g(0)]B(μ+2, ν+1),

where B(x, y) is the Beta function (see, for example, Abramowitz and Ste-
gun [1, Formula 6.2.1]) that is given as in

B(x, y)=
∫ 1

0
ξx−1(1− ξ)y−1 dξ = Γ (x)Γ (y)

Γ (x+y) ,

Γ (z) being the Gamma function. Next, because g0(0)=g0(1)=0, we have
that f0(x) is now of the form f0(x)= xμ+1(1 − x)ν+1g̃(x), g̃(x) being a
regular function on [0,1]. In view of this, we apply the trapezoidal rule to
the integral I [f0] = ∫ 1

0 f̂0(t) dt , where f̂0(t)= f0
(
φ(t)

)
φ′(t), where φ ∈ Tr,s

with r = (2k+ 1)/(μ+ 2) and s = (2l + 1)/(ν + 2), k and l being positive
integers. Then, by Corollary 3.3, we have the optimal result

(
I [p]+ Q̂n[f0]

)− I [f ]=O(
hω

)
as h→0; ω=min{(μ+3)r, (ν+3)s}.
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In case μ=ν= c, and φ∈Tr,r , with r= (2k+1)/(c+2), where k is a posi-
tive integer, this result becomes,

(
I [p]+ Q̂n[f0]

)− I [f ]=O(
hω

)
as h→0; ω= (c+3)r.

If, furthermore, c= 0 [that is, f ∈C∞[0,1] and g(x)= f (x)], and 2r is a
positive odd integer at least 3, then

(
I [p]+ Q̂n[f0]

)− I [f ]=O(
h3r) as h→0.

4. NUMERICAL EXAMPLES

In this section, we provide two examples, considered already in [16],
to illustrate the validity of the results of the preceding section. The com-
putations for these examples were done in quadruple-precision arithmetic
(approximately 35 decimal digits).

Example 4.1. Consider the integral

∫ 1

0
xμ dx= 1

1+μ, μ>−1.

In this case, we have

f (x)=xμ and f (x)=
∞∑

s=0

(−1)s
(
μ

s

)

(1−x)s.

Of these, the first is a single-term series representing f (x) asymptotically
as x→0+ with γ0 =μ, while the second is a (convergent) series represent-
ing f (x) asymptotically as x→ 1− with δs = s, s = 0,1, . . . . (Note that,
in the notation of Corollary 3.3, ν= 0 now.) Thus, if we choose r and s

arbitrarily, we will obtain, by part (i) of Theorem 3.2 and Corollary 3.3,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω=min{(μ+1)r, s}.

In case r = (2k+ 1)/(μ+ 1) and s = 2l+ 1, with k, l positive integers, we
will obtain, by part (ii) of Theorem 3.2,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0, ω=min{(μ+2)r,2s}.

This is so because the asymptotic expansion of f (x) as x→ 0+ consists
of only the term xμ.

In our computations, we have taken μ=0.1.
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In Table I, we give the relative errors in the Q̂n[f ] for n= 2k, k =
1, . . . ,10, obtained with the T r,s-transformation. In column j of this table,
we have chosen r = (j + 1.9)/(μ+ 1) and s = (j + 1.9)/(ν + 1) when j is
odd, while r= (j + 1)/(μ+ 1) and s= (j + 1)/(ν+ 1) when j is even. The
superior convergence of the columns with j an even integer is clearly dem-
onstrated. [Note that the r (the s), hence the clusterings of the effective
abscissas xi =ψ(i/n) near x=0 (near x=1) with j =2k−1 and j =2k are
approximately the same for each k.]

In Table II, we give the numbers

ρr,s,k = 1
log 2

· log
( |Q̂2k [f ]− I [f ]|

|Q̂2k+1 [f ]− I [f ]|
)

,

for the same values of r and s and for k = 1,2, . . . ,9. It is seen that,
with increasing k, the ρr,s,k are tending to min{(μ+1)r, s} when j an odd
integer, and to min{(μ+ 2)r,2s} when j is an even integer, completely in
accordance with Theorem 3.2 and Corollary 3.3. (With the floating-point
arithmetic we are using, this convergence seems to be less visible for rela-
tively large r and s in the columns with even j .)

Example 4.2. Consider the integral
∫ 1

0
f (x)=0, f (x)= d

dx

[
xμ+1(1−x)ν+1w(x)

]
, μ, ν >0, w∈C∞[0,1].

In this case, we have

f (x)=xμ(1−x)νg(x),
where

g(x)= [
(μ+1)(1−x)− (ν+1)x

]
w(x)+x(1−x)w′(x).

If case w(0) and w(1) are both nonzero, we have that g(0) and g(1) are
both nonzero as well, and this implies that γ0 =μ and δ0 =ν. Thus, if we
choose r and s arbitrarily, we will obtain, by part (i) of Theorem 3.2 and
Corollary 3.3,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω=min{(μ+1)r, (ν+1)s}.

In case r= (2k+1)/(μ+1) and s= (2l+1)/(ν+1), with k, l positive inte-
gers, we will obtain, by part (ii) of Theorem 3.2 and Corollary 3.3,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0, ω=min{(μ+2)r, (ν+2)s}.

In our computations, we have taken μ= 0.1 and ν= 0.4 and w(x)=
1/(1+x).
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In Table III, we give the absolute errors (recall that I [f ] = 0) in the
Q̂n[f ] for n= 2k, k= 1, . . . ,10, obtained with the T r,s-transformation. In
column j of this table, we have chosen r = (j + 1.9)/(μ+ 1) and s= (j +
1.9)/(ν+1) when j is odd, while r= (j +1)/(μ+1) and s= (j +1)/(ν+1)
when j is even. The superior convergence of the columns with j an even
integer is again clearly demonstrated. [Note that the r (the s), hence the
clusterings of the effective abscissas xi = ψ(i/n) near x = 0 (near x = 1)
with j =2k−1 and j =2k are approximately the same for each k.]

In Table IV, we give the numbers ρr,s,k defined in the preceding exam-
ple for the same values of r and s and for k= 1,2, . . . ,9. It is seen that,
with increasing k, the ρr,s,k are tending to min{(μ+ 1)r, (ν + 1)s} when
j an odd integer, and to min{(μ+ 2)r, (ν + 2)s} when j is an even inte-
ger, completely in accordance with Theorem 3.2 and Corollary 3.3. (As in
the preceding example, with the floating-point arithmetic we are using, this
convergence seems to be less visible for relatively large r and s in the col-
umns with even j .)

5. CONCLUDING REMARKS

In this work, we presented a class of variable transformations, which
we denoted Tr,s , whose members φ(t) have asymptotic expansions as
t→0+ and t→ 1− of the forms given in (2.4). We also noted that what
gives these transformations their exceptional effectiveness is the fact that
their asymptotic expansions include the powers t r+2i , i = 0,1, . . . , 
r/2�,
and (1 − t)s+2i , i = 0,1, . . . , 
s/2�, but exclude the powers t r+2i+1, i =
0,1, . . . , 
r/2� − 1, and (1 − t)s+2i+1, i = 0,1, . . . , 
s/2� − 1. To see what
happens if we do include the powers t r+2i+1, i = 0,1, . . . , 
r/2� − 1, and
(1 − t)s+2i+1, i = 0,1, . . . , 
s/2� − 1, let us modify the definition of class
Tr,s by replacing the condition in (2.4) in Definition 2.1 by the following
analogous condition:

φ(t) =
2
r/2�∑

i=0

αit
r+i +O(

t2r
)

as t→0+,
(5.1)

φ(t) =
2
s/2�∑

i=0

βi(1− t)s+i +O(
(1− t)2s) as t→1−,

which can be realized by taking, for example, φ(t)= t r/[t r + (1− t)s ], which
is one of the variable transformations proposed in [7]. For convenience,
let us denote by T̃r,s the resulting modification of class Tr,s . With class
T̃r,s variable transformations φ(t), the quality of the trapezoidal rule on
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the transformed integrals
∫ 1

0 f (φ(t))φ
′(t) dt drops drastically. In particular,

Corollary 3.3 and Corollary 3.4 assume the following forms:

Proposition 5.1. In case f (x)= xμ(1 − x)νg(x), g(x) being infinitely
differentiable on [0,1], the following hold:

(i) In the worst case,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω=min{(�μ+1)r, (�ν+1)s}.

(ii) If μ and ν are real, and if r = (2k + 1)/(μ+ 1) and s = (2l +
1)/(ν+ 1), where k and l are positive integers, then we have the
optimal result

Q̂n[f ]− I [f ] = O
(
hω

)
as h→0;

ω = min{(μ+1)r+1, (ν+1)s+1}.

Proposition 5.2. When μ= ν = c, let φ ∈ T̃r,r in Corollary 5.1. Then
the following hold:

(i) In the worst case,

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω= (�c+1)r.

(ii) If c is real, and if r= (2k+1)/(c+1), where k is a positive inte-
ger, then we have the optimal result

Q̂n[f ]− I [f ]=O(
hω

)
as h→0; ω= (c+1)r+1.

The proofs of these propositions are the same as those of Corollaries
3.3 and 3.4 and are left to the reader.

As can be seen by comparing parts (ii) of Corollaries 3.3 and 3.4 with
parts (ii) of Propositions 5.1 and 5.2, the quality of Q̂n[f ] drops with opti-
mal values of r and s when we chose φ ∈ T̃r,s since r > 1. That is, higher
accuracy is achieved with class Tr,s transformations than with class T̃r,s
transformations when r and s assume their optimal values. For example,
if we let c= 0 so that f ∈C∞[0,1], and take r= s= 2k+ 1 with k a posi-
tive integer, the error in Q̂n[f ] is O(hr+1) in Proposition 5.2, whereas it is
O(h2r ) in Corollary 3.4.
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